EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 Menu EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 Menu EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 FUN 2 EO: 1.4-j 1 / 15 The high pressure coolant injection system can supply make up water to the reactor vessel until: Reactor pressure has decreased below approximately 100 psig The low pressure emergency systems are activated The reactor is fully depressurized Reactor reaches its maximum pressure level 2 / 15 The emergency core cooling systems (ECCS) are designed to: Provide core cooling under loss of coolant accident conditions Control the reactor temperature during normal operations Ensure a backup power supply to the reactor Monitor radiation levels inside the reactor 3 / 15 What is the purpose of the high pressure coolant injection system? Maintain radiation levels inside the core Provide a backup power source during outages Operate while the nuclear system is at high pressure Cool the core during normal operations 4 / 15 The core spray system and low pressure coolant injection mode operate at: High pressures Variable pressures Medium pressures Low pressures 5 / 15 The automatic depressurization system (ADS) operates to: Provide reactor depressurization for certain loss of coolant accidents Manually regulate the temperature inside the reactor Maintain regular reactor pressures during operations Prevent over-cooling of the reactor core 6 / 15 During a loss of coolant accident, the low pressure coolant injection mode's goal is to preclude fuel cladding temperatures from exceeding: 3200 F 2200 F 1000 F 1800 F 7 / 15 Automatic depressurization is needed when: The nuclear process barrier is functioning perfectly The emergency systems fail to start during testing The high pressure coolant injection system is inoperable and a break has occurred The reactor needs a routine pressure release 8 / 15 The emergency core cooling systems consist of how many high pressure systems? One Three Two Four 9 / 15 The residual heat removal system primarily takes water from: The suppression pool Automatic relief systems Internal coolant chambers External water sources 10 / 15 The low pressure emergency core cooling systems consist of: Two independent HPCI systems Dual nuclear process barriers Core spray system and LPCI mode of the residual heat removal system ADS and HPCI systems 11 / 15 Which system requires no auxiliary ac power, plant air systems, or external cooling water systems to function? Low pressure coolant injection (LPCI) mode High pressure coolant injection (HPCI) system Automatic depressurization system (ADS) Core spray system 12 / 15 The core spray system functions by: Spraying water on top of the fuel assemblies Injecting coolants at the base of the reactor Monitoring radiation levels continuously Regulating the reactor's internal pressure 13 / 15 For core cooling protection, flow from the low pressure ECCS is not required until: High pressure ECCS have started functioning Core temperature has reached a certain threshold Reactor pressure has decreased below approximately 100 psig Reactor pressure has increased above 200 psig 14 / 15 The dominant mode of the residual heat removal system is: Core spray system mode Automatic depressurization mode High pressure coolant injection mode Low pressure coolant injection mode 15 / 15 The core spray system consists of: Two separate and independent pumping loops Three backup coolant injection systems Four relief valves for pressure release One central pumping mechanism Your score is Share your results with your friends!! LinkedIn Facebook Twitter VKontakte Restart quiz PreviousFUN 2 EO: 1.4-jNext