EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 Menu EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 Menu EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 FUN 2 EO: 1.4-j 1 / 15 The core spray system and low pressure coolant injection mode operate at: Variable pressures High pressures Medium pressures Low pressures 2 / 15 The low pressure emergency core cooling systems consist of: ADS and HPCI systems Core spray system and LPCI mode of the residual heat removal system Two independent HPCI systems Dual nuclear process barriers 3 / 15 The emergency core cooling systems consist of how many high pressure systems? One Three Two Four 4 / 15 The residual heat removal system primarily takes water from: External water sources The suppression pool Automatic relief systems Internal coolant chambers 5 / 15 The core spray system functions by: Spraying water on top of the fuel assemblies Monitoring radiation levels continuously Regulating the reactor's internal pressure Injecting coolants at the base of the reactor 6 / 15 The automatic depressurization system (ADS) operates to: Provide reactor depressurization for certain loss of coolant accidents Manually regulate the temperature inside the reactor Maintain regular reactor pressures during operations Prevent over-cooling of the reactor core 7 / 15 What is the purpose of the high pressure coolant injection system? Cool the core during normal operations Maintain radiation levels inside the core Operate while the nuclear system is at high pressure Provide a backup power source during outages 8 / 15 The core spray system consists of: Four relief valves for pressure release One central pumping mechanism Three backup coolant injection systems Two separate and independent pumping loops 9 / 15 The dominant mode of the residual heat removal system is: Core spray system mode Automatic depressurization mode Low pressure coolant injection mode High pressure coolant injection mode 10 / 15 During a loss of coolant accident, the low pressure coolant injection mode's goal is to preclude fuel cladding temperatures from exceeding: 1800 F 1000 F 3200 F 2200 F 11 / 15 Which system requires no auxiliary ac power, plant air systems, or external cooling water systems to function? Low pressure coolant injection (LPCI) mode High pressure coolant injection (HPCI) system Automatic depressurization system (ADS) Core spray system 12 / 15 Automatic depressurization is needed when: The emergency systems fail to start during testing The high pressure coolant injection system is inoperable and a break has occurred The reactor needs a routine pressure release The nuclear process barrier is functioning perfectly 13 / 15 The high pressure coolant injection system can supply make up water to the reactor vessel until: Reactor pressure has decreased below approximately 100 psig The reactor is fully depressurized The low pressure emergency systems are activated Reactor reaches its maximum pressure level 14 / 15 The emergency core cooling systems (ECCS) are designed to: Control the reactor temperature during normal operations Monitor radiation levels inside the reactor Provide core cooling under loss of coolant accident conditions Ensure a backup power supply to the reactor 15 / 15 For core cooling protection, flow from the low pressure ECCS is not required until: Core temperature has reached a certain threshold Reactor pressure has decreased below approximately 100 psig High pressure ECCS have started functioning Reactor pressure has increased above 200 psig Your score is Share your results with your friends!! LinkedIn Facebook Twitter VKontakte Restart quiz PreviousFUN 2 EO: 1.4-jNext