EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 Menu EO: 1.1 – 1.9 FUN 1 EO: 1.1 FUN 1 EO: 1.2 FUN 1 EO: 1.3 FUN 1 EO: 1.4 FUN 1 EO: 1.5 FUN 1 EO: 1.6 FUN 1 EO: 1.7 & 1.8 FUN 1 EO: 1.9 EO: 1.10 – 1.19 FUN 1 EO: 1.10 FUN 1 EO: 1.11 FUN 1 EO: 1.12 FUN 1 EO: 1.13 FUN 1 EO: 1.14 FUN 1 EO: 1.15 FUN 1 EO: 1.16 FUN 1 EO: 1.17 FUN 1 EO: 1.18 FUN 1 EO: 1.19 EO: 1.20- 1.30 FUN 1 EO: 1.20 FUN 1 EO: 1.21 & 1.22 FUN 1 EO: 1.23 & 1.24 FUN 1 EO: 1.25 FUN 1 EO: 1.26 FUN 1 EO: 1.27 FUN 1 EO: 1.28 FUN 1 EO: 1.29 & 1.30 EO: 1.31- 1.39 FUN 1 EO: 1.31 & 1.32 FUN 1 EO: 1.33 & 1.34 FUN 1 EO: 1.35 & 1.36 FUN 1 EO: 1.37 FUN 1 EO: 1.38 FUN 1 EO: 1.39 EO: 1.40- 1.49 FUN 1 EO: 1.40 FUN 1 EO: 1.41 FUN 1 EO: 1.42 FUN 1 EO: 1.43 FUN 1 EO: 1.44 FUN 1 EO: 1.45 & 1.46 FUN 1 EO: 1.47 FUN 1 EO: 1.48 FUN 1 EO: 1.49 EO: 1.50- 1.62 FUN 1 EO: 1.50 FUN 1 EO: 1.51 FUN 1 EO: 1.52 FUN 1 EO: 1.53 FUN 1 EO: 1.54 FUN 1 EO: 1.55 FUN 1 EO: 1.56 FUN 1 EO: 1.57 FUN 1 EO: 1.58 FUN 1 EO: 1.59 FUN 1 EO: 1.60 FUN 1 EO: 1.61 FUN 1 EO: 1.62 EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 Menu EO: 1.1 – 1.3 FUN 2 EO: 1.1 FUN 2 EO: 1.2 FUN 2 EO: 1.3 EO: 1.4a – 1.4d FUN 2 EO: 1.4-a FUN 2 EO: 1.4-b FUN 2 EO: 1.4-c FUN 2 EO: 1.4-d EO: 1.4e – 1.4h FUN 2 EO: 1.4-e FUN 2 EO: 1.4-f FUN 2 EO: 1.4-g FUN 2 EO: 1.4-h EO: 1.4i – 1.5 FUN 2 EO: 1.4-i FUN 2 EO: 1.4-j FUN 2 EO: 1.4-k FUN 2 EO: 1.4-l FUN 2 EO: 1.5 FUN 2 EO: 1.4-j 1 / 15 Automatic depressurization is needed when: The nuclear process barrier is functioning perfectly The reactor needs a routine pressure release The high pressure coolant injection system is inoperable and a break has occurred The emergency systems fail to start during testing 2 / 15 Which system requires no auxiliary ac power, plant air systems, or external cooling water systems to function? Automatic depressurization system (ADS) High pressure coolant injection (HPCI) system Core spray system Low pressure coolant injection (LPCI) mode 3 / 15 The high pressure coolant injection system can supply make up water to the reactor vessel until: The low pressure emergency systems are activated Reactor pressure has decreased below approximately 100 psig The reactor is fully depressurized Reactor reaches its maximum pressure level 4 / 15 The core spray system consists of: Two separate and independent pumping loops One central pumping mechanism Four relief valves for pressure release Three backup coolant injection systems 5 / 15 What is the purpose of the high pressure coolant injection system? Provide a backup power source during outages Operate while the nuclear system is at high pressure Maintain radiation levels inside the core Cool the core during normal operations 6 / 15 The automatic depressurization system (ADS) operates to: Prevent over-cooling of the reactor core Maintain regular reactor pressures during operations Provide reactor depressurization for certain loss of coolant accidents Manually regulate the temperature inside the reactor 7 / 15 The core spray system and low pressure coolant injection mode operate at: Variable pressures High pressures Medium pressures Low pressures 8 / 15 The emergency core cooling systems (ECCS) are designed to: Ensure a backup power supply to the reactor Provide core cooling under loss of coolant accident conditions Monitor radiation levels inside the reactor Control the reactor temperature during normal operations 9 / 15 The residual heat removal system primarily takes water from: Automatic relief systems Internal coolant chambers External water sources The suppression pool 10 / 15 The core spray system functions by: Injecting coolants at the base of the reactor Monitoring radiation levels continuously Regulating the reactor's internal pressure Spraying water on top of the fuel assemblies 11 / 15 The emergency core cooling systems consist of how many high pressure systems? Three One Four Two 12 / 15 During a loss of coolant accident, the low pressure coolant injection mode's goal is to preclude fuel cladding temperatures from exceeding: 3200 F 2200 F 1800 F 1000 F 13 / 15 For core cooling protection, flow from the low pressure ECCS is not required until: High pressure ECCS have started functioning Reactor pressure has decreased below approximately 100 psig Core temperature has reached a certain threshold Reactor pressure has increased above 200 psig 14 / 15 The dominant mode of the residual heat removal system is: High pressure coolant injection mode Core spray system mode Automatic depressurization mode Low pressure coolant injection mode 15 / 15 The low pressure emergency core cooling systems consist of: Two independent HPCI systems Dual nuclear process barriers ADS and HPCI systems Core spray system and LPCI mode of the residual heat removal system Your score is Share your results with your friends!! LinkedIn Facebook Twitter VKontakte Restart quiz PreviousFUN 2 EO: 1.4-jNext